Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684731

RESUMO

Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 µg/mL or DS 50 µg/mL plus olanzapine 50 µg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.


Assuntos
Antocianinas/farmacologia , Elaeocarpaceae/metabolismo , Glucosídeos/farmacologia , Antocianinas/química , Antocianinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/metabolismo , Glucosídeos/química , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Olanzapina , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
2.
J Alzheimers Dis ; 77(1): 33-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651325

RESUMO

One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, ß-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/prevenção & controle , Suplementos Nutricionais , Compostos Fitoquímicos/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Compostos Fitoquímicos/farmacologia , Resultado do Tratamento
3.
Compr Rev Food Sci Food Saf ; 14(4): 431-445, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27453695

RESUMO

Quinoa (Chenopodium quinoa Willd., Amaranthaceae) is a grain-like, stress-tolerant food crop that has provided subsistence, nutrition, and medicine for Andean indigenous cultures for thousands of years. Quinoa contains a high content of health-beneficial phytochemicals, including amino acids, fiber, polyunsaturated fatty acids, vitamins, minerals, saponins, phytosterols, phytoecdysteroids, phenolics, betalains, and glycine betaine. Over the past 2 decades, numerous food and nutraceutical products and processes have been developed from quinoa. Furthermore, 4 clinical studies have demonstrated that quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans. However, vast challenges and opportunities remain within the scientific, agricultural, and development sectors to optimize quinoa's role in the promotion of global human health and nutrition.

4.
Pharmacol Res ; 68(1): 59-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220243

RESUMO

Defatted soybean flour (DSF) can sorb and concentrate blueberry anthocyanins and other polyphenols, but not sugars. In this study blueberry polyphenol-enriched DSF (BB-DSF) or DSF were incorporated into very high fat diet (VHFD) formulations and provided ad libitum to obese and hyperglycemic C57BL/6 mice for 13 weeks to investigate anti-diabetic effects. Compared to the VHFD containing DSF, the diet supplemented with BB-DSF reduced weight gain by 5.6%, improved glucose tolerance, and lowered fasting blood glucose levels in mice within 7 weeks of intervention. Serum cholesterol of mice consuming the BB-DSF-supplemented diet was 13.2% lower than mice on the diet containing DSF. Compounds were eluted from DSF and BB-DSF for in vitro assays of glucose production and uptake. Compared to untreated control, doses of BB-DSF eluate containing 0.05-10µg/µL of blueberry anthocyanins significantly reduced glucose production by 24-74% in H4IIE rat hepatocytes, but did not increase glucose uptake in L6 myotubes. The results indicate that delivery of blueberry polyphenols stabilized in a high-protein food matrix may be useful for the dietary management of pre-diabetes and/or diabetes.


Assuntos
Mirtilos Azuis (Planta) , Farinha , Glycine max , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Polifenóis/uso terapêutico , Animais , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/sangue , Glucose/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo , Polifenóis/farmacologia , Ratos , Aumento de Peso/efeitos dos fármacos
5.
Food Chem ; 135(4): 2994-3002, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22980902

RESUMO

Cinnamon has a long history of medicinal use and continues to be valued for its therapeutic potential for improving metabolic disorders such as type 2 diabetes. In this study, a phytochemically-enhanced functional food ingredient that captures water soluble polyphenols from aqueous cinnamon extract (CE) onto a protein rich matrix was developed. CE and cinnamon polyphenol-enriched defatted soy flour (CDSF) were effective in acutely lowering fasting blood glucose levels in diet induced obese hyperglycemic mice at 300 and 600 mg/kg, respectively. To determine mechanisms of action, rat hepatoma cells were treated with CE and eluates of CDSF at a range of 1-25 µg/ml. CE and eluates of CDSF demonstrated dose-dependent inhibition of hepatic glucose production with significant levels of inhibition at 25 µg/ml. Furthermore, CE decreased the gene expression of two major regulators of hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. The hypoglycemic and insulin-like effects of CE and CDSF may help to ameliorate type 2 diabetes conditions.


Assuntos
Cinnamomum zeylanicum/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/administração & dosagem , Polifenóis/farmacologia , Ratos , Alimentos de Soja/análise
6.
J Cosmet Dermatol ; 9(3): 185-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20883291

RESUMO

BACKGROUND: Cell migration, angiogenesis, inflammation, and extracellular matrix remodeling are key events in wound healing. Natural products, including fatty acids (FAs), can accelerate wound healing by modulating the aforementioned events. AIMS: This study aims to evaluate the effect of lucuma (Pouteria lucuma O Kezte) nut oil (LNO) on fibroblasts migration, angiogenesis, inflammation, bacterial and fungal growth, and wound healing. Methods GC-MS analysis of FAs methyl esters (FAMES) was used for chemical characterization of LNO. In vitro studies were carried out with LNO investigating the induction of cell migration, cytoskeleton remodeling of human fibroblasts, inhibition of LPS-induced nitric oxide production in macrophages, and antibacterial and antifungal effects. Two in vivo studies were carried out to study LNO's effect on angiogenesis and wound healing: (i) tail fin regeneration in transgenic zebrafish larvae expressing enhanced green fluorescent protein (EGFP) in vascular endothelial cells was used to study vessel sprouting and wound healing and (ii) the closure of wounds was evaluated in CD-1 mice after topical applications of LNO-containing formulations. RESULTS: Lucuma nut oil is a mixture of FAs, 99.7% of which were characterized. Major components of LNO (w/w) are linoleic acid (38.9%), oleic acid (27.9%), palmitic acid (18.6%), stearic acid (8.9%), and γ linolenic acid (2.9%). In vitro studies showed that LNO significantly promoted migration and vinculin expression in human fibroblasts. LNO decreased LPS-induced nitric oxide production and did not display significant antibacterial or antifungal effects. LNO induced tail fin regeneration in transgenic zebrafish larvae 48 h after tail fin amputation and significantly accelerated cutaneous wound closure in CD-1 mice. CONCLUSIONS: Natural FAs from P. lucuma nut promote skin regeneration and, thus, may have applications in medicine and skin care.


Assuntos
Óleos de Plantas/uso terapêutico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Recém-Nascido , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Óleos de Plantas/química , Pouteria , Fenômenos Fisiológicos da Pele , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA